试卷征集
加入会员
操作视频

甲、乙、丙三人分小球,分法如下:先在三张纸签上各写上三个正整数a、b、c,使a<b<c.分小球时,每人抽一张签,然后把抽得的签上的数减去a,所得结果就是他这一轮分得的小球个数,以后重复上述过程(每次写上的数不变).经过若干轮(不小于2轮)这种分法后,甲共得到了20个小球,乙共得10个小球,丙共得9个小球,又知最后一次乙拿到的纸签上写的数是c,而丙在各轮中拿到的纸签上写的数字之和是18,问正整数a、b、c各是多少?为什么?

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:100引用:2难度:0.3
相似题
  • 1.关于x,y的方程x2+xy+2y2=29的整数解(x,y)的组数为(  )

    发布:2025/5/29 6:0:1组卷:290引用:5难度:0.5
  • 2.已知三个实数x1,x2,x3,它们中任何一个数加其余两个数的积的5倍总等于6,这样的三元数组(x1,x2,x3),共有(  )

    发布:2025/5/29 9:0:1组卷:95引用:1难度:0.5
  • 3.求方程xy+x+y=6的整数解.

    发布:2025/5/29 7:30:2组卷:163引用:1难度:0.9
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正