在平面直角坐标系xOy中,对于△OAB和点P(不与点O重合)给出如下定义:若边OA,OB上分别存在点M,点N,使得点O与点P关于直线MN对称,则称点P为△OAB的“翻折点”.
(1)已知A(3,0),B(0,33).
①若点M与点A重合,点N与点B重合,直接写出△OAB的“翻折点”的坐标;
②P是线段AB上一动点,当P是△OAB的“翻折点”时,求AP长的取值范围;
(2)直线y=-34x+b(b>0)与x轴,y轴分别交于A,B两点,若存在以直线AB为对称轴,且斜边长为2的等腰直角三角形,使得该三角形边上任意一点都为△OAB的“翻折点”,直接写出b的取值范围.
3
y
=
-
3
4
x
+
b
(
b
>
0
)
【考点】一次函数综合题.
【答案】(1)①△OAB的“翻折点”的坐标为P(,);
②6-3≤PA≤3;
(2)b≥.
9
2
3
3
2
②6-3
3
(2)b≥
1
+
7
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:937引用:1难度:0.2
相似题
-
1.如图,平面直角坐标系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直线
过A点,且与y轴交于D点.y=-12x+2
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2024/12/23 19:30:2组卷:1223引用:3难度:0.4 -
2.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.52发布:2024/12/23 17:30:9组卷:4638引用:6难度:0.3 -
3.如图,在梯形ABCD中,AD∥BC,AB=CD,以边BC所在直线为x轴,边BC的中点O为原点建立直角坐标平面,已知点B的坐标为(-4,0),直线AB的解析式为y=2x+m.
(1)求m的值;
(2)求直线CD的解析式;
(3)若点A在第二象限,是否存在梯形ABCD,它的面积为30?若存在,请求出点A的坐标;若不存在,请说明理由.发布:2025/1/21 8:0:1组卷:5引用:0难度:0.3
相关试卷