直线:l:y=34x-3与抛物线L:y=ax2-4ax相交于点A,B,与y轴相交于点C,点P(m,n)在L上且位于点A,B之间,PQ⊥x轴交l于点Q.

(1)小静得出结论:l与L有一个公共点在x轴上,请判断小静的结论是否正确,并说明理由.
(2)若a=-1,如图.
①当n=3时,求点Q的坐标;
②当m为何值时,△PBC的面积最大?并求出这个最大值.
(3)若n随m的增大而增大,直接写出a的取值范围.
3
4
【考点】二次函数综合题.
【答案】(1)小静的结论正确,理由见解析;
(2)①点Q的坐标为或;
②当时,S△PBC取得最大值;
(3)或.
(2)①点Q的坐标为
(
1
,-
9
4
)
(
3
,-
3
4
)
②当
m
=
13
8
361
32
(3)
0
<
a
<
3
16
3
16
<
a
≤
3
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:277引用:2难度:0.3
相似题
-
1.综合与探究
如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3).14
(1)请直接写出A,B两点的坐标及直线l的函数表达式;
(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;
(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.发布:2025/6/20 15:30:2组卷:5038引用:7难度:0.4 -
2.已知抛物线
,顶点为A,且经过点y=a(x-12)2-2,点B(-32,2).C(52,2)
(1)求抛物线的解析式;
(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.发布:2025/6/20 16:0:1组卷:8039引用:12难度:0.2 -
3.如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.
(1)求抛物线的解析式;
(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;
(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.发布:2025/6/20 17:0:9组卷:897引用:10难度:0.3