三国时期吴国数学家赵爽制作了一张“勾股圆方图”以验证勾股定理,后世也称“赵爽弦图”.实际上,赵爽弦图与完全平方公式有着密切的联系.如图是由8个全等的直角三角形拼成,其中直角边分别为a,b,请回答以下问题:
(1)如图,正方形ABCD的面积为 (a+b)2(a+b)2,正方形IJKL的面积为 (a-b)2(a-b)2;(用含a,b的式子表示)
(2)根据图中正方形ABCD的面积及正方形IJKL的面积的关系,可得(a+b)2,ab,(a-b)2的等量关系为 (a+b)2=4ab+(a-b)2(a+b)2=4ab+(a-b)2;
(3)请通过运算证明上述等量关系;
(4)记正方形ABCD,正方形EFGH,正方形IJKL的面积分别为S1,S2,S3,若S1+S2+S3=30,直角三角形AEH的面积为32,则求(a-b)2的值.
3
2
【答案】(a+b)2;(a-b)2;(a+b)2=4ab+(a-b)2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:314引用:2难度:0.5
相似题
-
1.10.《时代数学学习》杂志2007年3月将改版为《时代学习报•数学周刊》,其徽标是我国古代“弦图”的变形(见示意图).该图可由直角三角形ABC绕点O同向连续旋转三次(每次旋转90°)而得.因此有“数学风车”的动感.假设中间小正方形的面积为1,整个徽标(含中间小正方形)的面积为92,AD=2,则徽标的外围周长为( )
发布:2025/1/25 8:0:2组卷:363引用:2难度:0.6 -
2.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论正确的是 .(填序号即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.发布:2024/12/23 12:0:2组卷:459引用:3难度:0.6 -
3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为( )
发布:2024/12/19 23:30:5组卷:1867引用:29难度:0.6