如图,抛物线y=x2+bx+c与x轴相交于点A(-1,0)和点B,交y轴于点C,tan∠ACO=13.
(1)求抛物线的解析式;
(2)如图1,P点为第四象限内抛物线上的一个动点,D点是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;
(3)如图2,将抛物线向左平移1个单位长度,得到新的抛物线y1,M为新抛物线对称轴上一点,N为直线AC上一动点,在(2)的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形,若存在,请直接写出点N的坐标;若不存在,请说明理由.

tan
∠
ACO
=
1
3
【考点】二次函数综合题.
【答案】(1)y=x2-2x-3;(2)△BDP面积的最大值为,P(,-);(3)存在,N点坐标为(-,)或(,-)或(,-).
27
16
3
2
15
4
3
2
3
2
3
2
15
2
9
2
33
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:155引用:2难度:0.3
相似题
-
1.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=-x2+2x+3经过点A、C、A′三点.
(1)求A、A′、C三点的坐标;
(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;
(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.发布:2025/6/19 9:0:1组卷:1341引用:51难度:0.5 -
2.如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5
,且5=ODOE,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-43x2+116x+c经过点E,且与AB边相交于点F.12
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.发布:2025/6/19 9:0:1组卷:1930引用:51难度:0.5 -
3.如图,抛物线 y=
x2-12x-2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.32
(1)求A、B、C三点的坐标.
(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由.
(3)当点M运动到什么位置时,四边形ABMC的面积最大,并求出此时M点的坐标和四边形ABMC的最大面积.发布:2025/6/19 9:0:1组卷:2419引用:52难度:0.3