(1)发现:如图1,在平面内,已知⊙A的半径为r,B为⊙A外一点,且AB=a,P为⊙A上一动点,连接PA,PB,易得PB的最大值为 a+ra+r,最小值为 a-ra-r;(用含a,r的代数式表示)
(2)应用:①如图2,在矩形ABCD中,AB=6,BC=4,E为AD边中点,F为AB边上一动点,在平面内沿EF将△AEF翻折得到△PEF,连接PB,则PB的最小值为 210-2210-2;
②如图3,点P为线段AB外一动点,分别以PA、PB为直角边,P为直角顶点,作等腰Rt△APC和等腰Rt△BPD,连接BC、AD.若AP=32,AB=7,求AD的最大值;
(3)拓展:如图4,已知以AB为直径的半圆O,C为弧AB上一点,∠ABC=60°,P为弧BC上任意一点,CD⊥CP交AP于D,连接BD,若AB=6,则BD的最小值为 37-3337-33.

10
10
2
7
3
7
3
【考点】圆的综合题.
【答案】a+r;a-r;2-2;3-3
10
7
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1706引用:6难度:0.1
相似题
-
1.已知,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是优弧CBD上的任意一点,AH=2,CH=4.
(1)如图1,
①求⊙O的半径;
②求sin∠CMD的值.
(2)如图2,直线BM交直线CD于点E,直线MH交⊙O于点N,连结BN交CD于点F,求HE•FH的值.发布:2025/6/7 7:0:1组卷:476引用:2难度:0.3 -
2.如图,四边形OABC中,AO∥BC,∠AOC=90°,AO=3,AB=5.以O为圆心,OA为半径作圆,⊙O经过点C,且与BA的延长线交于F.延长AO交圆于E,连接FC交AE于点D.
(1)求证:BC是⊙O的切线;
(2)求cos∠FAE的值;
(3)求线段OD的长.发布:2025/6/7 5:0:1组卷:79引用:1难度:0.3 -
3.等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.
(1)求∠ACB的大小(用α,β表示);
(2)连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC=2∠BAC;
(3)在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α-45°,
①求证:GM∥BC,GM=BC;12
②请直接写出的值.OMMC发布:2025/6/7 16:0:2组卷:1490引用:8难度:0.1