(1)[问题提出]:如图1,AB为⊙O的直径,点C为⊙O上一点,连接AC、BC,若AB=6,则△ABC面积的最大值为 99.
(2)[问题探究]:如图2,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AB=AD,点E、F分别在边BC、CD上.且∠EAF=60°,若BE=3,EF=10,求DF的长;
(3)[问题解决]:为进一步落实国家“双减”政策,丰富学生的校园生活,某校计划为同学们开设实践探究课.按规划要求,需设计一个正方形的研学基地,如图3.点E、F分别在正方形ABCD的边BC、CD上,将△AEF区域修建为种植采摘区,基地内其余部分为研学探究区,BE+DF的长为40m,∠EAF=45°.为了让更多的学生能够同时进行种植,要求种植采摘区(△AEF)的面积尽可能大,则种植采摘区的面积的最大值为 (400+4002)(400+4002)m2,此时正方形ABCD的边长为 (20+202)(20+202)m.

2
2
2
2
【考点】圆的综合题.
【答案】9;(400+400);(20+20)
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:207引用:4难度:0.1
相似题
-
1.如图1,以点O为圆心,半径为4的圆交x轴于A,B两点,交y轴于C,D两点,点P为劣弧AC上的一动点,延长CP交x轴于点E;连接PB,交OC于点F.
(1)若点F为OC的中点,求PB的长;
(2)求CP•CE的值;
(3)如图2,过点O作OH∥AP交PD于点H,当点P在弧AC上运动时,连接AC,PC.试问△APC与△OHD相似吗?说明理由;的值是否保持不变?若不变,试证明,求出它的值;若发生变化,请说明理由.APDH发布:2025/6/24 18:30:1组卷:272引用:1难度:0.5 -
2.下面是“用三角板画圆的切线”的画图过程.
如图1,已知圆上一点A,画过A点的圆的切线.画法:
(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.则直线AD就是过点A的圆的切线.
请回答:①这种画法是否正确 (是或否);
②你判断的依据是:.发布:2025/6/25 8:0:1组卷:19引用:1难度:0.4 -
3.如图,已知⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标是(1,-1),半径为
.5
(1)比较线段AB与CD的大小;
(2)求A、B、C、D四点的坐标;
(3)过点D作⊙O′的切线,试求这条切线的解析式.发布:2025/6/24 20:0:2组卷:43引用:1难度:0.5