已知过抛物线y2=2px(p>0)的焦点F,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=6.
(1)求抛物线的方程;
(2)抛物线的准线与x轴交于点F',过点F'的直线l交抛物线C于M,N两点,当F′M•F′N=12时,求直线l的方程.
2
F
′
M
•
F
′
N
=
12
【答案】(1)y2=4x.
(2).
(2)
y
=±
2
2
(
x
+
1
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:31引用:1难度:0.6
相似题
-
1.已知抛物线C:x2=8y,点F是抛物线的焦点,直线l与抛物线C交于A,B两点,点M的坐标为(2,-2).
(1)若直线l过抛物线的焦点F,且•MA=1,求直线l的斜率;MB
(2)分别过A,B两点作抛物线C的切线,两切线的交点为M,求直线l的斜率.发布:2024/12/29 12:0:2组卷:41引用:3难度:0.5 -
2.已知抛物线C的顶点是坐标原点O,焦点F在y轴的正半轴上,经过点F的直线与抛物线C交于A,B两点,若
,则抛物线C的方程为( )OA•OB=-12发布:2024/10/16 12:0:2组卷:141引用:1难度:0.7 -
3.已知抛物线C:x2=2py(p>0)的焦点为F,过点F的直线与抛物线交于点A,B,与抛物线的准线交于点M,且点A位于第一象限,F恰好为AM的中点,
(λ∈R),则λ=( )AF=λBM发布:2024/11/25 23:0:1组卷:155引用:6难度:0.6