在平面直角坐标系中,抛物线y=x2+bx-1(b是常数)的对称轴为直线x=-1,点A在这个抛物线上,且点A的横坐标为m.
(1)求该抛物线对应的函数表达式,并写出顶点C的坐标.
(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为-1-2m.
①当△ABC是以AB为底的等腰三角形时,求△ABC的面积.
②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.
(3)设点D的坐标为(m,2-m),点E的坐标为(1-m,2-m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.
【考点】二次函数综合题.
【答案】(1)抛物线对应的函数表达式为:y=x2+2x-1,顶点C的坐标为(-1,-2);
(2)①8;②h=(m+1)2(0<m<1)或h=4m2(m>1);
(3)当或m=3或m=4时,抛物线与矩形有3个交点.
(2)①8;②h=(m+1)2(0<m<1)或h=4m2(m>1);
(3)当
-
3
-
21
2
<
m
<
-
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:76引用:6难度:0.2
相似题
-
1.如图,已知抛物线y=ax2+bx-2与x轴的两个交点是A(4,0),B(1,0),与y轴的交点是C.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由;
(3)设抛物线的顶点是F,对称轴与AC的交点是N,P是在AC上方的该抛物线上一动点,过P作PM⊥x轴,交AC于M.若P点的横坐标是m.问:
①m取何值时,过点P、M、N、F的平面图形不是梯形?
②四边形PMNF是否有可能是等腰梯形?若有可能,请求出此时m的值;若不可能,请说明理由.发布:2025/1/2 8:0:1组卷:83引用:1难度:0.5 -
2.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.
发布:2024/12/23 17:30:9组卷:3756引用:38难度:0.4 -
3.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C在x轴上,点D(3
,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.若抛物线y=ax2-45ax+10(a≠0且a为常数)的顶点落在△ADE的内部,则a的取值范围是( )5发布:2024/12/26 1:30:3组卷:2679引用:7难度:0.7