如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)当t为几秒时,BP平分∠ABC?
(3)问t为何值时,△BCP为等腰三角形?
(4)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?

【考点】全等三角形的判定与性质;等腰三角形的判定与性质.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/23 21:30:2组卷:1172引用:8难度:0.4
相似题
-
1.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.
发布:2025/6/24 3:0:1组卷:998引用:68难度:0.7 -
2.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.
发布:2025/6/24 3:0:1组卷:3987引用:62难度:0.7 -
3.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:
①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH12
其中,正确的结论有( )发布:2025/6/24 3:0:1组卷:3672引用:70难度:0.9