试卷征集
加入会员
操作视频

在我们的数学活动中,若身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用如下方法:
操作感知:
第一步:如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,再把纸片展开;
第二步:如图2,再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.
(1)在图2中,请至少写出3个30°的角;
(2)猜想论证:若延长MN交BC于点P,如图3所示,请判定△BMP的形状并证明你的结论;
(3)拓展探究:在图3中,若AB=a,BC=b,请说明当a,b满足什么关系时,才能在矩形纸片ABCD中剪出符合(2)中的△BMP.

【考点】四边形综合题
【答案】(1)∠ABM,∠NBM,∠NBC;
(2)等边三角形,证明见解析过程;
(3)
a
3
2
b
b
2
3
3
a
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/28 8:0:9组卷:79引用:2难度:0.1
相似题
  • 1.在人教版八年级上册数学教材P53的数学活动中有这样一段描述:在四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”,如图(1).

    (1)知识应用:小风想要做一个如图(2)所示的风筝,他想先固定中间的“十字架”,再确定四周,从数学的角度看,小风确定“十字架”时应满足什么要求?并证明你的结论.
    (2)知识拓展:如图(3)所示,如果D为△ABC内一点,BD平分∠ABC,且AD=CD,试证明:AB=CB.

    发布:2025/6/9 0:30:2组卷:72引用:1难度:0.2
  • 2.矩形ABCD中,∠ACB=30°,△BEF中,∠BEF=90°,∠BFE=30°,BF=
    1
    2
    AC,连接FD,点G是FD中点,将△BEF绕点B顺时针旋转α(0°<α<360°).
    (1)如图1,若点B恰好在线段DF延长线上,AB=4,连接EG,求EG的长度;
    (2)如图2,若点E恰好落在线段FD上,连接AG,证明:2(GD-GA)=
    3
    DC;
    (3)如图3,若点E恰好落在线段AB延长线上,点M是线段AD上一点,3AM=DM,N是平面内一点,满足∠MND=∠FDC,已知AB=4,当△DMN是等腰三角形时,直接写出线段MN的长度.

    发布:2025/6/9 1:0:1组卷:118引用:1难度:0.1
  • 3.如图,正方形ABCD中,AE=BF.
    (1)求证:△BCE≌△CDF;
    (2)求证:CE⊥DF;
    (3)若CD=6,且DG2+GE2=41,则BE=

    发布:2025/6/8 23:30:1组卷:360引用:3难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正