“牟合方盖”是我国古代数学家刘徽在研究球的体积过程中构造的一个和谐优美的几何模型.如图1,正方体的棱长为2,用一个底面直径为2的圆柱面去截该正方体,沿着正方体的前后方向和左右方向各截一次,截得的公共部分即是一个“牟合方盖”(如图2).已知这个“牟合方盖”与正方体外接球的体积之比为4:33π,则这个“牟合方盖”的体积为( )
4
:
3
3
π
【考点】棱柱、棱锥、棱台的体积;球的体积和表面积.
【答案】D
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/5 8:0:7组卷:111引用:2难度:0.5
相似题
-
1.如图所示,AB为圆O的直径,PC⊥平面ABC,Q在线段PA上.
(1)求证:平面BCQ⊥平面ACQ;
(2)若Q为靠近P的一个三等分点,PC=BC=1,,求VP-BCQ的值.AC=22发布:2025/1/20 8:0:1组卷:37引用:3难度:0.6 -
2.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)设CD的中点为M,求证:EM∥平面DAF;
(Ⅱ)求三棱锥B-CME的体积.发布:2025/1/20 8:0:1组卷:16引用:1难度:0.5 -
3.如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
,四边形DCBE为平行四边形,DC⊥平面ABC.32
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.发布:2025/1/20 8:0:1组卷:95引用:3难度:0.1