如图,在平面直角坐标系中,抛物线y=ax2+bx+c(ac≠0)与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C.若线段OA、OB、OC的长满足OC2=OA•OB,则这样的抛物线称为“黄金”抛物线.如图,抛物线y=ax2+bx+2(a≠0)为“黄金”抛物线,其与x轴交点为A,B(其中B在A的右侧),与y轴交于点C,且OA=4OB.

(1)求抛物线的解析式;
(2)若P为AC上方抛物线上的动点,过点P作PD⊥AC,垂足为D.
①求PD的最大值;
②连接PC,当△PCD与△ACO相似时,求点P的坐标.
【考点】二次函数综合题.
【答案】(1);
(2)①;
②P的坐标(-3,2)或者.
y
=
-
1
2
x
2
-
3
2
x
+
2
(2)①
4
5
5
②P的坐标(-3,2)或者
(
-
3
2
,
25
8
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/25 7:0:2组卷:1126引用:11难度:0.1
相似题
-
1.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a=,b=,顶点C的坐标为;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.发布:2025/6/17 23:30:2组卷:163引用:1难度:0.4 -
2.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.发布:2025/6/18 0:30:4组卷:1978引用:7难度:0.2 -
3.如图,抛物线y=ax2-3ax+b与直线AB交于A(-2,
)、B(4,0)两点,点C是此抛物线上的一个动点,过点C作CD⊥x轴,交直线AB于点D.32
(1)求此抛物线的解析式;
(2)如图①,当点C在直线AB下方的抛物线上运动时,请求出线段CD长度的最大值;
(3)如图②,以D为圆心,CD的长为半径作⊙D.当⊙D与x轴相切时,请直接写出点C的横坐标.发布:2025/6/17 22:30:1组卷:63引用:1难度:0.2