试卷征集
加入会员
操作视频

2022北京冬奥会和冬残奥会吉祥物冰墩墩、雪容融亮相上海展览中心、为了庆祝吉祥物在上海的亮相,某商场举办了一场赢取吉祥物挂件的“定点投篮”活动,方案如下:
方案一:共投9次,每次投中得1分,否则得0分,累计所得分数记为Y;
方案二:共进行三轮投篮,每轮最多投三次,直到投中两球为止得3分,否则得0分,三轮累计所得分数记为X.累计所得分数越多,所获得奖品越多.现在甲准备参加这个“定点投篮”活动,已知甲每次投篮的命中率为P,每次投篮互不影响.
(1)若p=
1
2
,甲选择方案二,求第一轮投篮结束时,甲得3分的概率;
(2)以最终累计得分的期望值为决策依据,甲在方案一,方案二之中选其一、应选择哪个方案?

【答案】(1)
1
2

(2)答案见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:96引用:4难度:0.6
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正