若抛物线L:y=ax2+bx+c(a≠0)与直线l:y=kx+m(k≠0)有且只有一个交点,我们就称此直线l与抛物线L的相切.直线l叫做抛物线L的切线,交点叫做抛物线L的切点.
(1)若点A为抛物线y=x2-2x+4与y轴的交点,求以点A为切点的该抛物线的切线的解析式;
(2)已知一次函数y1=2x,二次函数y2=x2+1,是否存在二次函数y3=ax2+bx+c,其图象经过点(-3,2),使得直线y1=2x与y2=x2+1,y3=ax2+bx+c都相切于同一点?若存在,求出y3的解析式;若不存在,请说明理由;
(3)已知直线l1:y=k1x+m1(k1≠0)、直线l2:y2=k2x+m2(k2≠0)是抛物线y=-x2+2x+3的两条切线,当l1与l2的交点P的纵坐标为5时,试判断k1•k2是否为定值,并说明理由.
【考点】二次函数综合题.
【答案】(1)y=-2x+4;
(2)存在,y3的解析式为;
(3)k1•k2是定值,k1⋅k2=-4,理由见解析.
(2)存在,y3的解析式为
y
3
=
1
2
x
2
+
x
+
1
2
(3)k1•k2是定值,k1⋅k2=-4,理由见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:655引用:1难度:0.3
相似题
-
1.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a=,b=,顶点C的坐标为;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.发布:2025/6/17 23:30:2组卷:163引用:1难度:0.4 -
2.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.发布:2025/6/18 0:30:4组卷:1978引用:7难度:0.2 -
3.如图,抛物线y=ax2-3ax+b与直线AB交于A(-2,
)、B(4,0)两点,点C是此抛物线上的一个动点,过点C作CD⊥x轴,交直线AB于点D.32
(1)求此抛物线的解析式;
(2)如图①,当点C在直线AB下方的抛物线上运动时,请求出线段CD长度的最大值;
(3)如图②,以D为圆心,CD的长为半径作⊙D.当⊙D与x轴相切时,请直接写出点C的横坐标.发布:2025/6/17 22:30:1组卷:63引用:1难度:0.2