已知椭圆E的左、右焦点分别是F1(-3,0)、F2(3,0),且经过点M(2,22).
(1)求椭圆E的标准方程:
(2)设AC,BD是过椭圆E的中心且相互垂直的椭圆E的两条弦,问是否存在定圆G,使得G为四边形ABCD的内切圆?若存在,求圆G的方程,若不存在,请说明理由.
F
1
(
-
3
,
0
)
F
2
(
3
,
0
)
M
(
2
,
2
2
)
【答案】(1)椭圆E的标准方程为.
(2)存在内切圆的方程为.
x
2
4
+
y
2
=
1
(2)存在内切圆的方程为
x
2
+
y
2
=
4
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:122引用:2难度:0.3
相似题
-
1.已知椭圆C:
=1(a>b>0)的一个顶点坐标为A(0,-1),离心率为x2a2+y2b2.32
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x-1)(k≠0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.发布:2024/12/29 12:30:1组卷:370引用:4难度:0.5 -
2.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4510引用:26难度:0.3 -
3.如果椭圆
的弦被点(4,2)平分,则这条弦所在的直线方程是( )x236+y29=1发布:2024/12/18 3:30:1组卷:456引用:3难度:0.6
相关试卷