试卷征集
加入会员
操作视频

探索发现
如图(1),点E是正方形ABCD边DC上的点,DF⊥AE于点F.
(1)求证:AD2=AF•AE;
(2)连接BE,BF,求证:
BF
DF
=
BE
DE

迁移拓展
如图(2),E是菱形ABCD边DC上的点,∠DFE=∠C=60°,
tan
CBE
=
3
4
,直接写出
BF
BE
的值.

【考点】四边形综合题
【答案】探索发现
(1)证明见解析过程;
(2)证明见解析过程;
迁移拓展
5
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/29 8:6:34组卷:128引用:1难度:0.3
相似题
  • 1.综合与实践
    问题情境:
    如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.
    猜想证明:
    (1)试判断四边形BE'FE的形状,并说明理由;
    (2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;
    解决问题:
    (3)如图①,若AB=15,CF=3,则AE的长为

    发布:2025/5/22 22:30:1组卷:178引用:1难度:0.1
  • 2.(1)已知:等腰△ABC,∠A=120°,AB=AC,若AB=1,则BC的长是

    (2)在△ABC中,AB=AC,∠BAC=90°,点D是△ABC外一点,点D与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD,满足∠ADB=45°.求证:BD2+2AD2=DC2
    (3)如图,已知四边形ABCD中,∠ABC=∠BCD=90°,AB=2,AC=4,DC=6,点E是线段DC上的一个动点(点E不与点C和点D重合),连接BE,过点C作CF⊥BE交BE于点F,点G在线段BF上,且满足∠FCG=30°,点M是线段AC上的动点,点N是线段AB上的动点.当点G在△ABC的内部时,是否存在△MNG周长的最小值?如果存在,请你求出△MNG周长的最小值;如果不存在,请你说明理由.

    发布:2025/5/22 23:0:1组卷:614引用:3难度:0.1
  • 3.如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AB=8cm,BC=6cm,AD=10cm,点P、Q分别是线段CD和AD上的动点.点P以2cm/s的速度从点D向点C运动,同时点Q以1cm/s的速度从点A向点D运动,当其中一点到达终点时,两点停止运动,将PQ沿AD翻折得到QP',连接PP'交直线AD于点E,连接AC、BQ.设运动时间为t(s),回答下列问题:
    (1)当t为何值时,PQ∥AC?
    (2)求四边形BCPQ的面积S(cm2)关于时间t(s)的函数关系式;
    (3)是否存在某时刻t,使点Q在∠P'PD平分线上?若存在,求出t的值;若不存在,请说明理由.

    发布:2025/5/22 21:0:1组卷:244引用:2难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正