定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=ax2+bx+c沿直线y=m翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=BDAC

(1)图①是抛物线y=x2-2x-3沿直线y=0翻折后得到惊喜线.则点A坐标(-1,0)(-1,0),点B坐标(1,-4)(1,-4),惊喜四边形ABCD属于所学过的哪种特殊平行四边形菱形菱形,|D|为22.
(2)如果抛物线y=m(x-1)2-6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.
(3)如果抛物线y=(x-1)2-6m沿直线y=m翻折后所得的惊喜线在m-1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|.
BD
AC
【考点】二次函数综合题.
【答案】(-1,0);(1,-4);菱形;2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:674引用:5难度:0.2
相似题
-
1.如图,已知抛物线y=ax2+bx-2与x轴的两个交点是A(4,0),B(1,0),与y轴的交点是C.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由;
(3)设抛物线的顶点是F,对称轴与AC的交点是N,P是在AC上方的该抛物线上一动点,过P作PM⊥x轴,交AC于M.若P点的横坐标是m.问:
①m取何值时,过点P、M、N、F的平面图形不是梯形?
②四边形PMNF是否有可能是等腰梯形?若有可能,请求出此时m的值;若不可能,请说明理由.发布:2025/1/2 8:0:1组卷:83引用:1难度:0.5 -
2.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.
发布:2024/12/23 17:30:9组卷:3749引用:38难度:0.4 -
3.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C在x轴上,点D(3
,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.若抛物线y=ax2-45ax+10(a≠0且a为常数)的顶点落在△ADE的内部,则a的取值范围是( )5发布:2024/12/26 1:30:3组卷:2679引用:7难度:0.7