小明学习了图形的旋转之后,积极思考,利用两个大小不同的直角三角形与同学做起了数学探究活动.如图1,在△ABC与△DEF中,AC=BC=a,∠C=90°,DF=EF=b,(a>b),∠F=90°.

【探索发现】将两个三角形顶点C与顶点F重合,如图2,将△DEF绕点C旋转,他发现BE与AD的数量关系一直不变,则线段BE与AD具有怎样的数量关系,请说明理由;
【深入思考】将两个三角形的顶点C与顶点D重合,如图3所示将△DEF绕点C旋转.
①当B、F、E三点共线时,连接BF、AE,线段BF、CF、AE之间的数量关系为 当点F在BE上时,BF=AE+CF;当点F在BE的延长线上时,BF=AE-CF当点F在BE上时,BF=AE+CF;当点F在BE的延长线上时,BF=AE-CF;
②如图4所示,连接AF、AE,若线段AC、EF交于点O,试探究四边形AECF能否为平行四边形?如果能,求出a、b之间的数量关系,如果不能,试说明理由.
【拓展延伸】如图5,将△DEF绕点C旋转,连接AF,取AF的中点M,连接EM,则EM的取值范围为 |a-5b|2≤EM≤a+5b2|a-5b|2≤EM≤a+5b2(用含a、b的不等式表示).

|
a
-
5
b
|
2
a
+
5
b
2
|
a
-
5
b
|
2
a
+
5
b
2
【考点】四边形综合题.
【答案】当点F在BE上时,BF=AE+CF;当点F在BE的延长线上时,BF=AE-CF;≤EM≤
|
a
-
5
b
|
2
a
+
5
b
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 16:30:1组卷:531引用:6难度:0.1
相似题
-
1.如图,在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E.DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正确的有( )2发布:2025/5/23 22:30:2组卷:1273引用:4难度:0.2 -
2.【问题提出】
(1)如图①,OP为∠AOB的平分线,PC⊥OA于点C,PD⊥OB于点D,若S△OPC=3,则S△OPD=
【问题探究】
(2)如图②,a、b是两条平行的直线,且a、b之间的距离为12,点A为直线a上一点,点B、C为直线b上两点,且点B在点C的左侧,若∠BAC=45°,求BC的最小值;
【问题解决】
(3)如图③,四边形ABCD是园林规划局欲修建的一块平行四边形园林的大致示意图,沿对角线BD修一条人行走道,沿∠BAD的平分线AP(点P在BD上)修一条园林灌溉水渠.根据规划要求,∠ABC=120°,AP=120米,且使得平行四边形ABCD的面积尽可能小,问平行四边形ABCD的面积是否存在最小值?若存在,求出其最小值,若不存在,请说明理由.发布:2025/5/23 22:30:2组卷:137引用:1难度:0.2 -
3.如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S(平方单位),点P的运动时间为t(s)(0≤t≤4).
(1)当点M与点B重合时,t=s;
(2)当t为何值时,△APQ≌△BMF;
(3)求S与t的函数关系式;
(4)以线段PQ为边,在PQ右侧作等边△PQE,当2≤t≤4时,请直接写出点E运动路径的长.发布:2025/5/23 21:0:1组卷:200引用:1难度:0.1