设f(x)是定义域为R的奇函数,φ(x)是定义域为R的偶函数,并且f(x)+φ(x)=2ax(a>0且a≠1).
(1)求f(x)的函数解析式;
(2)若函数f(x)的图象过点(2,154)是否存在正数m(m≠1),使函数g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
(
2
,
15
4
)
g
(
x
)
=
lo
g
m
[
a
2
x
+
a
-
2
x
-
mf
(
x
)
]
【考点】函数解析式的求解及常用方法;函数的奇偶性.
【答案】(1)f(x)=ax-a-x,
(2)不存在.
(2)不存在.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:39引用:2难度:0.5
相似题
-
1.已知函数f(x)的图象如图所示,则该函数的解析式为( )
发布:2024/12/2 8:0:27组卷:102引用:5难度:0.7 -
2.已知f(x+1)=2x+1,则f(2)=( )
发布:2024/12/21 4:30:3组卷:50引用:2难度:0.8 -
3.为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比.已知6分钟后药物释放完毕,药物释放完毕后,y与t的函数关系是为y=(
)116,如图所示,根据图中提供的信息,回答下列问题:t-110
(1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.125毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少分钟后,学生才能回到教室?发布:2024/12/3 8:0:1组卷:51引用:1难度:0.5