试卷征集
加入会员
操作视频

如图,已知抛物线y=-x2+bx+c与直线AB交于点A(-3,0),点B(1,4).
(1)求抛物线的解析式;
(2)点M是x轴上方抛物线上一点,点N是直线AB上一点,若以A、O、M、N为顶点为顶点的四边形是以OA为边的平行四边形,求点M的坐标.

【考点】二次函数综合题
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 10:30:1组卷:920引用:3难度:0.2
相似题
  • 1.如图,经过原点的抛物线y=-x2+2mx(m>1)交x轴正半轴于点A,过点P(1,m)作直线PD⊥x轴于点D,交抛物线于点B,记点B关于抛物线对称轴的对称点为C,连接CB,CP.
    (1)用含m的代数式表示BC的长.
    (2)连接CA,当m为何值时,CA⊥CP?
    (3)过点E(1,1)作EF⊥BD于点E,交CP延长线于点F.
    ①当m=
    5
    4
    时,判断点F是否落在抛物线上,并说明理由;
    ②延长EF交AC于点G,在EG上取一点H,连接CH,若CH=CG,且△PFE与△CHG的面积相等,则m的值是

    发布:2025/5/23 18:30:2组卷:403引用:3难度:0.1
  • 2.如图,在平面直角坐标系中,直线y=-x-5与x轴交于点A,与y轴交于点B.抛物线y=ax2+4ax+c经过点A、点B.
    (1)求抛物线的函数表达式并直接写出顶点的坐标;
    (2)若在第三象限的抛物线上有一动点M,当点M到直线AB的距离最大时,求点M的坐标;
    (3)点C,D分别为线段AO,线段AB上的点,且BD=
    2
    AC,连接CD.将线段CD绕点D顺时针旋转90度,点C旋转后的对应点为点E,连接OE.当线段OE的长最小时,请直接写出直线DE的函数表达式.

    发布:2025/5/23 18:30:2组卷:700引用:2难度:0.3
  • 3.二次函数y=ax2-2x+c的图象与x轴交于A(2,0)、B两点(点A在点B左侧),与y轴交于点C(0,3),顶点为E.
    (1)求这个二次函数的表达式;
    (2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;
    (3)如图②,P是该二次函数图象上的一个动点,连接OP,连接PC、PE、CE.当S△CPE=2S△CPO,求点P的坐标.

    发布:2025/5/23 18:30:2组卷:244引用:1难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正