某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:
①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分、2分、3分、6分,答错任一题减2分.
②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局.
③每位参加者按问题A,B,C,D顺序作答,直至答题结束.
假设甲考生对问题A,B,C,D回答正确的概率依次为34、12、13、14、且各题回答正确与否相互之间没有影响
(1)求甲考生本轮答题结束时恰答了3道题的概率;
(2)求甲考生能进入下一轮的概率.
3
4
1
2
1
3
1
4
【考点】相互独立事件和相互独立事件的概率乘法公式.
【答案】(1);
(2).
3
8
(2)
1
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:109引用:2难度:0.7
相似题
-
1.甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局,且每局甲获胜的概率和乙获胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( )12发布:2024/12/29 12:0:2组卷:254引用:6难度:0.6 -
2.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为
;若他第1球投不进,则第2球投进的概率为23.若他第1球投进概率为13,他第2球投进的概率为( )23发布:2024/12/29 12:0:2组卷:301引用:5难度:0.7 -
3.某市在市民中发起了无偿献血活动,假设每个献血者到达采血站是随机的,并且每个献血者到达采血站和其他的献血者到达采血站是相互独立的.在所有人中,通常45%的人的血型是O型,如果一天内有10位献血者到达采血站献血,用随机模拟的方法来估计一下,这10位献血者中至少有4位的血型是O型的概率.
发布:2024/12/29 11:0:2组卷:1引用:1难度:0.7