如图1,在边长为1的正方形ABCD中,AE平分∠BAC,交BC于点E,过点E作EF⊥AC于点F,延长FE交AB的延长线于点H,过点F作FG∥BC交AE于点G,连接BG.
(1)求证:BH=FC;
(2)求证:四边形BEFG是菱形;
(3)如图2,点M是CD的中点,点P是AD上的动点,点N是对角线AC上的动点,请问PM+PN是否有最小值?如果有,求出最小值;如果没有,请说明理由.

【考点】四边形综合题.
【答案】(1)见解析;
(2)见解析;
(3)PM+PN的最小值为,
(2)见解析;
(3)PM+PN的最小值为
3
2
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/31 8:0:9组卷:153引用:4难度:0.4
相似题
-
1.(1)如图1,在四边形ABCD中,DA=DC,∠A=∠C=90°,E、F分别是边AB、BC上的点,且∠EDF=
∠ADC,请直接写出图中线段AE、EF、FC之间的数量关系 .12
(2)如图2,在四边形ABCD中,DA=DC,∠A+∠C=180°,E、F分别是边AB、BC上的点,且∠EDF=∠ADC,上述结论是否仍然成立,并说明理由.12
(3)如图3,在四边形ABCD中,DA=DC,∠A+∠BCD=180°,E、F分别是边AB、BC延长线上的点,且∠EDF=∠ADC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,线段AE、EF、FC之间又有怎样的数量关系,请直接写出你的猜想,并说明理由.12发布:2025/6/9 2:30:1组卷:165引用:1难度:0.2 -
2.如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=
,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG,EF.下列结论:①∠EFG=45°;②△AEG的周长为8;③△CEG∽△AFG;④△CEG的面积为6.8.其中正确的个数是( )2发布:2025/6/9 3:0:1组卷:680引用:3难度:0.2 -
3.问题情境:数学活动课上,老师组织同学们以“正方形”为主题开展数学活动.
动手实践:
(1)如图①,已知正方形纸片ABCD,勤奋小组将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,易知点E、M、F共线,则∠EAF=度.
拓展应用:
(2)如图②,腾飞小组在图①的基础上进行如下操作:将正方形纸片沿EF继续折叠,使得点C的对应点为点N,他们发现,当点E的位置不同时,点N的位置也不同,当点E在BC边的某一位置时,点N恰好落在折痕AE上.
①则∠CFE=度.
②设AM与NF的交点为点P,运用(1)、(2)操作所得结论,求证:△ANP≌△FNE.
解决问题:
(3)在图②中,若AB=3,请直接写出线段MP的长.发布:2025/6/9 2:0:7组卷:1098引用:9难度:0.3