通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

(1)【解决问题】如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
证明:延长CD到G,使DG=BE,
在△ABE与△ADG中AB=AD ∠B=∠ADG=90° BE=DG
,
∴△ABE≌△ADG理由:(SAS),
进而证出:△AFE≌△AFG△AFG,理由:( SASSAS)
进而得EF=BE+DF
(2)【探究变式】如图2,四边形ABCD中,AB=AD,∠BAD=90°.点E、F分别在边BC、CD上,∠EAF=45°,∠B+∠D=180°时,还有EF=BE+DF吗?请证明你的猜想.
AB = AD |
∠ B =∠ ADG = 90 ° |
BE = DG |
【考点】四边形综合题.
【答案】△AFG;SAS
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:123引用:2难度:0.2
相似题
-
1.将正方形ABCD绕点A逆时针旋转α°到正方形AEFG.
(1)如图1,当0°<α<90°时,EF与CD相交于点H.求证:DH=EH;
(2)如图2,当0°<α<90°,点F、D、B正好共线时,
①求∠AFB度数;
②若正方形ABCD的边长为1,求CH的长:
(3)连接DE,EC,FC.如图3,正方形AEFG在旋转过程中,是否存在实数m使AE2=DE2+mFC2-EC2总成立?若存在,求m的值;若不存在,请说明理由.发布:2025/6/8 13:30:1组卷:67引用:1难度:0.2 -
2.定义:四边形ABCD中,将对角线AC和BD的平方和,即AC2+BD2的值称为四边形ABCD的“特征数”.
(1)①在菱形ABCD中,AB=4,∠BAD=60°,则菱形ABCD的“特征数”=;
②正方形EFGH的“特征数”等于16,则边长=;
(2)平行四边形ABCD中,AB=a,BC=b,试证明:平行四边形ABCD的“特征数”为2a2+2b2;
(3)利用(2)的结论解决下列问题:
平行四边形ABCD中,,BC=6,且AC⋅BD=60,AC<BD,试求AC和BD的长度.AB=42发布:2025/6/8 15:0:1组卷:373引用:3难度:0.2 -
3.如图,矩形ABCD中,AB=4,AD=8,E在AD上,DE=3,点P从点B出发,以每秒1个单位长度的速度沿着BC边向终点C运动,连接PE,设点P运动的时间为t秒.
(1)过P作PF⊥AD,垂足为F,用含t的式子表示:EF=,PC=;
(2)当t=2时,判断△PEC是否是直角三角形,并说明理由;
(3)当∠PEC=∠DEC时,求t的值.发布:2025/6/8 12:30:1组卷:43引用:3难度:0.4