在平面直角坐标系xOy中,A(O,2),B(4,2),C(4,0).若P为矩形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分矩形ABCO为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA,则称P为矩形ABCO的矩宽点.
例如:图中的P(35,25)为矩形ABCO的一个距宽点.
(1)在点D(12,12),E(2,1),F(134,74)中,矩形ABCO的矩宽点是 D,FD,F;
(2)若G(m,23)为矩形ABCO的矩宽点,求m的值;
(3)已知一次函数y=k(x-2)-1(k≠0),它的图象经过定点 (2,-1)(2,-1).若一次函数y=k(x-2)-1(k≠0)的图象上存在矩形ABCO的矩宽点,则k的取值范围是 -3<k≤-1或1≤k<3-3<k≤-1或1≤k<3(直接写出答案).

(
3
5
2
5
1
2
1
2
13
4
7
4
2
3
【考点】一次函数综合题.
【答案】D,F;(2,-1);-3<k≤-1或1≤k<3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:218引用:1难度:0.3
相似题
-
1.如图,平面直角坐标系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直线
过A点,且与y轴交于D点.y=-12x+2
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2024/12/23 19:30:2组卷:1223引用:3难度:0.4 -
2.如图,在梯形ABCD中,AD∥BC,AB=CD,以边BC所在直线为x轴,边BC的中点O为原点建立直角坐标平面,已知点B的坐标为(-4,0),直线AB的解析式为y=2x+m.
(1)求m的值;
(2)求直线CD的解析式;
(3)若点A在第二象限,是否存在梯形ABCD,它的面积为30?若存在,请求出点A的坐标;若不存在,请说明理由.发布:2025/1/21 8:0:1组卷:5引用:0难度:0.3 -
3.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.52发布:2024/12/23 17:30:9组卷:4635引用:6难度:0.3