根据党的十九大规划的“扶贫同扶志、扶智相结合”精准扶贫、精准脱贫路径,中国儿童少年基金会为了丰富留守儿童的课余文化生活,培养良好的阅读习惯,在农村留守儿童聚居地区捐建“小候鸟爱心图书角”.2021年寒假某村组织开展“小候鸟爱心图书角读书活动”,号召全村少年儿童积极读书,养成良好的阅读习惯.根据统计全村少年儿童中,平均每天阅读1小时以下约占19.7%、1~2小时约占30.3%、3~4小时约占27.5%、5小时以上约占22.5%.
(1)将平均每天阅读5小时以上认为是“特别喜欢”阅读,在活动现场随机抽取30名少年儿童进行阅读情况调查,调查发现:
父或母喜欢阅读 | 父或母不喜欢阅读 | |
少年儿童“特别喜欢”阅读 | 7 | 1 |
少年儿童“非特别喜欢”阅读 | 5 | 17 |
总计 | 12 | 18 |
(2)活动规定,每天平均阅读时长达3个小时的少年儿童,给予两次抽奖机会,否则只有一次抽奖机会,各次抽奖相互独立.中奖情况如表
抽中奖品 | 价值100元的图书购书券 | 价值50元的图书购书券 |
中奖概率 | 1 3 |
2 3 |
K2=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)能在错误的概率不超过0.005的条件下认为“特别喜欢”阅读与父或母喜欢阅读有关;
(2)ξ的分布列见解析;ξ的数学期望为E(ξ)=100元.
(2)ξ的分布列见解析;ξ的数学期望为E(ξ)=100元.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:120引用:4难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7