阻滞增长模型是描述自然界中生物种群数量增长的一种常见模型,其表达式为x(t)=xm1+(xmx0-1)e-rt,其中x0为初始时刻的种群数量,xm为自然条件所能容纳的最大种群数量,x(t)为从初始时刻起经历t个单位时间后的种群数量,r为初始时刻种群数量增长率.某高中生物研究小组进行草履虫种群数量增长实验,初始时刻在0.5mL培养液中放入了5个大草履虫,2天后观测到培养液中草履虫数量在100个左右.若大草履虫初始时刻的种群数量增长率r=1.6,用阻滞增长模型估计这0.5mL培养液中能容纳的大草履虫最大种群数量为( )
(参考数据ln0.01=-4.6,ln0.02=-3.9,ln0.03=-3.5,ln0.04=-3.2.)
x
m
1
+
(
x
m
x
0
-
1
)
e
-
rt
【考点】根据实际问题选择函数类型.
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:121引用:4难度:0.8
相似题
-
1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设某放射性同位素的衰变过程中,其含量P(单位:贝克)与时间t(单位:天)满足函数关系P(t)=
,其中P0为t=0时该放射性同位素的含量.已知t=15时,该放射性同位素的瞬时变化率为P02-t30,则该放射性同位素含量为4.5贝克时,衰变所需时间为( )-32ln210发布:2024/12/29 13:30:1组卷:156引用:11难度:0.7 -
2.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为福清人喜爱的交通工具.据预测,福清某新能源汽车4S店从2023年1月份起的前x个月,顾客对比亚迪汽车的总需量R(x)(单位:辆)与x的关系会近似地满足
(其中x∈N*且x≤6),该款汽车第x月的进货单价W(x)(单位:元)与x的近似关系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x个月的总需量R(x),求出第x月的需求量g(x)(单位:辆)与x的函数关系式;
(2)该款汽车每辆的售价为185000元,若不计其他费用,则这个汽车4S店在2023年的第几个月的月利润f(x)最大,最大月利润为多少元?发布:2024/12/29 11:30:2组卷:24引用:3难度:0.5 -
3.某工厂生产某种零件的固定成本为20000元,每生产一个零件要增加投入100元,已知总收入Q(单位:元)关于产量x(单位:个)满足函数:Q=
.400x-12x2,0≤x≤40080000,x>400
(1)将利润P(单位:元)表示为产量x的函数;(总收入=总成本+利润)
(2)当产量为何值时,零件的单位利润最大?最大单位利润是多少元?(单位利润=利润÷产量)发布:2024/12/29 13:0:1组卷:234引用:11难度:0.5