分别求出满足下列条件的椭圆的标准方程:
(1)短轴长为6,两个焦点间的距离为8;
(2)离心率e=32,且椭圆经过点(4,2 3).
3
2
3
【考点】椭圆的定义与标准方程;椭圆的性质.
【答案】(1)或.
(2)或.
x
2
25
+
y
2
9
=
1
y
2
25
+
x
2
9
=
1
(2)
x
2
8
+
y
2
2
=
1
y
2
76
+
x
2
19
=
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:2引用:1难度:0.7
相似题
-
1.已知椭圆
过点(0,x2a2+y2b2=1(a>b>0)),左右焦点分别为F1(-c,0)、F2(c,0),椭圆离心率为3.12
(1)求椭圆的方程;
(2)若直线l:与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足y=-12x+m,求直线l的方程.|AB||CD|=534发布:2025/1/2 21:30:1组卷:17引用:3难度:0.5 -
2.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( )
发布:2025/1/2 19:0:1组卷:41引用:4难度:0.5 -
3.已知椭圆C的中心在原点,右焦点坐标为(
,0),半长轴与半短轴的长度之和为5,则C的标准方程为( )5发布:2025/1/2 21:30:1组卷:24引用:2难度:0.9