试卷征集
加入会员
操作视频

“新冠”是近百年来人类遭遇的影响范围最广的全球性大流行病毒.三年来,我国疫情防控,强调人民至上、生命至上.明确坚决打赢疫情防控的人民战争、总体战、阻击战.近期,在病毒致病性大幅度减弱的前提下,为了经济的发展,有序放开,尽快复产复工复学.为了普及“新冠”防治知识,增强学生的防范意识,提高自身保护能力,某市团委在全市学生范围内,以“线上”的形式组织了一次“新冠”防治及个人卫生相关知识有奖竞赛(满分100分),竞赛奖励规则如下:得分在[70,80)内的学生获三等奖,得分在[80,90)内的学生
获二等奖,得分在[90,100]内的学生获一等奖,其它学生不得奖.为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如图所示的频数分布表.
竞赛成绩 [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100]
人数 6 12 18 34 16 8 6
(1)从该样本中随机抽取2名学生的竞赛成绩,求这2名学生恰有一名学生获奖的概率;
(2)若该市所有参赛学生的成绩X近似地服从正态分布N(64,225),若从所有参赛学生中(参赛学生人数特别多)随机抽取4名学生进行面对面座谈,设其中竞赛成绩在64分以上的学生人数为ξ,求随机变量ξ的分布列
和数学期望.

【答案】(1)
14
33
;(2)分布列见解答;数学期望为2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:55引用:1难度:0.5
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:203引用:7难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.2.0 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正