如图,在直线y=0和y=a(a>0)之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往.家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读.每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d,0)处的学校.已知船速为υ0(υ0>0),车速为2υ0(水流速度忽略不计).
(Ⅰ)若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间;
(Ⅱ)若d=a2,求该学生早晨上学时,从家出发到达学校所用的最短时间.
d
=
a
2
【考点】利用导数研究函数的最值;根据实际问题选择函数类型.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:13引用:2难度:0.5
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:298引用:2难度:0.4 -
2.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:48引用:4难度:0.5 -
3.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:194引用:2难度:0.1