在某次公务员考试中,参加考试的文科大学生与理科大学生的人数比例为1:3,且成绩分布在[30,90],为调研此次考试的整体状况,按文理科用分层抽样的方法抽取160人的成绩作为样本,得到成绩的频率分布直方图如图所示,且规定70及其以上为优秀.
文科生 | 理科生 | 合计 | |
优秀 | 4 | ||
不优秀 | |||
合计 | 160 |
(2)将上述调查所得频率视为概率,现从考生中任意抽取3名,记成绩优秀学生人数为X,求X的分布列与数学期望.
参考公式:
K
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【考点】离散型随机变量的均值(数学期望).
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:8引用:3难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7