阅读材料,在平面直角坐标系中,已知x轴上两点A(x1,0),B(x2,0)的距离记作AB=|x1-x2|是平面上任意两点,我们可以通过构造直角三角形来求AB间的距离,如图,过A,B分别向x轴、y轴作垂线AM1、AN1和
BM2、BN2,垂足分别是M1、N1、M2、N2,直线AN1交BM2于点Q,在Rt△ABQ中,AQ=|x1-x2|,BQ=|y1-y2|,
∴AB2=AQ2+BQ2=|x1-x2|+|y1-y2|2=(x1-x2|2+(y1-y2)2,
由此得到平面直角坐标系内任意两点A(x1,y1),B(x2,y2)间的距离公式为:AB=(x1-x2)2+(y1-y2)2(x1-x2)2+(y1-y2)2.
(1)直接应用平面内两点间距离公式计算点A(1,-3),B(-2,1)之间的距离为55;
(2)利用上面公式,在平面直角坐标系中的两点A(0,3),B(4,1),P为x轴上任一点,则PA+PB的最小值和此时P点的坐标;
(3)应用平面内两点间的距离公式,求代数式x2+(y-2)2+(x-3)2+(y-1)2的最小值.

(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
x
2
+
(
y
-
2
)
2
+
(
x
-
3
)
2
+
(
y
-
1
)
2
【考点】轴对称-最短路线问题;两点间的距离.
【答案】;5
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:851引用:5难度:0.5
相似题
-
1.如图,在矩形ABCD中,∠ACB=60°,BC=2
,F为线段AB上的动点,P为Rt△ABC内一动点,且满足∠APC=120°,若E为BC的中点,则PF+EF的最小值是( )3发布:2025/1/13 8:0:2组卷:259引用:1难度:0.5 -
2.如图,梯形ABCD中,AD∥BC,∠BAD=90°,AD=1,E为AB的中点,AC是ED的垂直平分线.
(1)求证:DB=DC;
(2)在图(2)的线段AB上找出一点P,使PC+PD的值最小,标出点P的位置,保留画图痕迹,并求出PB的值.发布:2025/1/28 8:0:2组卷:170引用:2难度:0.1 -
3.如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A(-3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是( )
发布:2024/12/23 19:30:2组卷:1296引用:15难度:0.5