设函数f(x)=(1+x)α的定义域是[-1,+∞),其中常数α>0.
(1)若α>1,求y=f(x)的过原点的切线方程.
(2)当α>2时,求最大实数A,使不等式f(x)>1+αx+Ax2对x>0恒成立.
(3)证明当α>1时,对任何n∈N*,有1<1nk=2n+1∑(k-1k)α+αk)<α.
1
n
k
=
2
n
+
1
∑
k
-
1
k
α
k
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:22引用:2难度:0.1