思考发现:

(1)如图1,点A和点B均在⊙O上,且∠AOB=60°,点P和点Q均在射线AM上,若∠APB=30°,则点P与⊙O的位置关系是 在圆上在圆上;若∠AQB>30°,则点Q与⊙O的位置关系是 在圆内在圆内.
问题解决:
如图2,四边形ABCD中,∠B=∠D=90°,∠DAB=135°,且AB=2,AD=42.
(2)若点P是BC边上任意一点,且∠APD=45°,求BP的长;
(3)如图3,以B为圆心,BC为半径作弧,交BA的延长线于点E,若点Q为弧EC上的动点,过点Q作QH⊥BC于点H,设点I为△BQH的内心,连接BI,QI,当点Q从点C运动到点E时,则内心I所经过的路径长为 522π522π.(直接填空)
2
5
2
2
5
2
2
【考点】圆的综合题.
【答案】在圆上;在圆内;π
5
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:812引用:3难度:0.1
相似题
-
1.如图,已知四边形ABCD是平行四边形,AC,BD相交于O,∠ABC的平分线交CD的延长线于F,⊙O′是△DEF的外接圆,G是⊙O上一点,且AG=CD.求证:BG∥OO′.
发布:2025/5/27 11:30:1组卷:82引用:1难度:0.5 -
2.如图,分别以边长1为的等边三角形ABC的顶点为圆心,以其边长为半径作三个等圆,得交点D、E、F,连接CF交⊙C于点G,以点E为圆心,EG长为半径画弧,交边AB于点M,求AM的长.
发布:2025/5/27 4:30:2组卷:57引用:1难度:0.5 -
3.如图,在平面直角坐标系中,A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E.已知CD=8,抛物线经过O,E,A三点.
(1)求直线OB的函数表达式;
(2)求抛物线的函数表达式;
(3)若P为抛物线上位于第一象限内的一个动点,以P,O,A,E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个.发布:2025/5/26 19:30:1组卷:111引用:1难度:0.3