已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
(1)求证:AB∥CD;
(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.
【答案】(1)见解答过程;
(2)见解答过程;
(3)∠D=108°.
(2)见解答过程;
(3)∠D=108°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1403引用:2难度:0.5
相似题
-
1.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D,(推理时不需要写出每一步的理由)
(1)求∠CBD的度数.
(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.发布:2025/6/8 10:0:2组卷:2198引用:12难度:0.5 -
2.如图,在三角形ABC中,点D,F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.
(1)EH与AD的位置关系为 ;
(2)若∠DGC=58°,且∠H=∠4+10°,则∠H=.发布:2025/6/8 10:30:2组卷:105引用:1难度:0.6 -
3.完成证明并写出推理根据
已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H,
求证:CD⊥AB.
证明:∵∠1=132°,∠ACB=48°∴∠1+∠ACB=180°∴DE∥BC
∴∠2=∠DCB()
又∵∠2=∠3
∴∠3=∠DCB()
∴HF∥DC()
∴∠CDB=∠FHB.()
又∵FH⊥AB,
∴∠FHB=90°∴∠CDB=°
∴CD⊥AB.()发布:2025/6/8 10:30:2组卷:158引用:7难度:0.7