在学习全等三角形知识时、数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:
(1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是 △AEC△AEC,此时BD和CE的数量关系是 BD=CEBD=CE;
(2)如图2、两个等腰直角三角形ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由;
(3)如图3,已知△ABC,请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数.

【考点】三角形综合题.
【答案】△AEC;BD=CE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:3398引用:16难度:0.3
相似题
-
1.已知,如图,在平面直角坐标系中,A为y轴正半轴上一点,B为x轴负半轴上一点.
(1)若BP平分∠ABO,AP平分∠BAO的外角,求∠P.
(2)如图2,C为x轴正半轴上一点,BP平分∠ABC,且P在AC的垂直平分线上.若∠ABC=2∠ACB,求证:AP∥BC.
(3)在第(2)问的条件下,D是AB上一点,E是x轴正半轴上一点,连AE交DP于H.当∠DHE与∠ABE满足什么条件时,DP=AE,请说明理由.发布:2025/6/17 19:30:1组卷:75引用:1难度:0.3 -
2.把一副三角板按如图1摆放(点C与点E重合),点B,C(E),F在同一直线上.∠ACB=∠DFE=90°,∠A=30°,∠DEF=45°,BC=EF=8cm,点P是线段AB的中点.△DEF从图1的位置出发,以4cm/s的速度沿CB方向匀速运动,如图2,DE与AC相交于点Q,连接PQ.当点D运动到AC边上时,△DEF停止运动.设运动时间为t(s).
(1)当t=1时,求AQ的长;
(2)当t为何值时,点A在线段PQ的垂直平分线上?
(3)当t为何值时,△APQ是直角三角形?发布:2025/6/17 21:30:1组卷:286引用:3难度:0.1 -
3.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有( )
①CE=BD;
②△ADC是等腰直角三角形;
③∠ADB=∠AEB;
④S四边形BCDE=BD•CE;12
⑤BC2+DE2=BE2+CD2.发布:2025/6/18 15:30:1组卷:1902引用:10难度:0.7