如图,我把对角线互相垂直的四边形叫做“垂美四边形”.
(1)性质探究:如图1,已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.
(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.如图2,当∠ACB=90°,连接PQ,求PQ.
【答案】(1)证明见解答;
(2)PQ=.
(2)PQ=
73
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:298引用:1难度:0.3
相似题
-
1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.
求证:∠AEB=∠CFB.发布:2025/1/24 8:0:2组卷:454引用:4难度:0.7 -
2.如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=
AB,点E、F分别为BC、AC的中点,请你在图中找出一组相等关系,使其满足上述所有条件,并加以证明.12发布:2025/1/24 8:0:2组卷:4引用:1难度:0.5 -
3.如图,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,则∠B=.
发布:2025/1/28 8:0:2组卷:10引用:0难度:0.7