试卷征集
加入会员
操作视频

【基础巩固】
(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B,求证:AC2=AD•AB.
【尝试应用】
(2)如图2,在平行四边形ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=5,BE=3,求AD的长.
【拓展提高】
(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠BAD=2∠EDF,AE=1,DF=4,求菱形ABCD的边长(直接写出答案).

【考点】相似形综合题
【答案】(1)见解析;
(2)
25
3

(3)
4
2
-
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/25 17:0:1组卷:480引用:4难度:0.3
相似题
  • 1.如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF交AD于点G,连接CG交PQ于点H,连接CE,EH.
    (1)求证:△PBE∽△QFG;
    (2)求∠ECG的度数;
    (3)求证:EG2-CH2=GQ•GD.

    发布:2025/5/25 21:0:1组卷:400引用:2难度:0.3
  • 2.如图1,在菱形ABCD中,∠ABC是锐角,P、Q分别是边DC、BC延长线上的动点,连接AP、AQ分别交BC、DC于点M、N.
    (1)当AP⊥BC且∠PAQ=∠D时,证明:△ABM≌△ADN;
    (2)如图2,当∠PAQ=
    1
    2
    ∠BCD时,连接AC、PQ.
    ①证明:AC2=CP•CQ;
    ②若AB=4,AC=2,则当CM为何值时,△APQ是以PQ为底边的等腰三角形.

    发布:2025/5/25 21:30:1组卷:184引用:1难度:0.1
  • 3.【证明体验】(1)如图1,△ABC中,D为BC边上任意一点,作DE⊥AC于E,若∠CDE=
    1
    2
    ∠A,求证:△ABC为等腰三角形;
    【尝试应用】
    (2)如图2,四边形ABCD中,∠D=90°,AD=CD,AE平分∠BAD,∠BCD+∠EAD=180°,若DE=2,AB=6,求AE的长;
    【拓展延伸】
    (3)如图3,△ABC中,点D在AB边上满足CD=BD,∠ACB=90°+
    1
    2
    ∠B,若AC=10
    3
    ,BC=20,求AD的长.

    发布:2025/5/25 20:0:1组卷:497引用:1难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正