问题提出
(1)如图①,点M为⊙O外一点,点A在⊙O上,⊙O的半径为3,MO=5,则MA的最大值是88,MA的最小值是22.
问题探究
(2)如图②,在正方形ABCD内部有一点P,连接PD=3,PC=6,∠DPC=135°,求PB的长;
问题解决
(3)如图③,所示区域为某小区一块空地,∠BAD=∠ADC=90°,AB=20m,AD=103m,CD=10m,ˆBC所对的圆心角为60°,该物业管理部门计划在这块空地内部点P处建造一个凉亭,同时在ˆBC上取一点Q,从P点分别向A、D、Q处修建文化长廊,为了节约修建文化长廊的成本,不考虑其他因素,是否存在这样的点P,使得PA+PD+PQ最小,若存在,请求PA+PD+PQ的最小值;若不存在,请说明理由.

3
ˆ
BC
ˆ
BC
【考点】圆的综合题.
【答案】8;2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:582引用:2难度:0.1
相似题
-
1.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=EFAC,求58的值;BEOC
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.发布:2025/5/23 22:0:2组卷:4386引用:11难度:0.3 -
2.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
(2)若A为EH的中点,求的值;EFFD
(3)若EA=EF=1,求圆O的半径.发布:2025/5/23 22:0:2组卷:9737引用:20难度:0.5 -
3.【阅读理解】三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.
如图1,△ABC中,点D是AB边上一点,连接CD,若CD2=AD•BD,则称点D是△ABC中AB边上的“好点”.
【探究应用】
(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;
(2)如图3,△ABC中,AB=14,cosA=,tanB=22,若点D是AB边上的“好点”,求线段AD的长;34
(3)如图4,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D,若点H是△ACD中CD边上的“好点”.
①求证:AH=BH;
②若BC⊥CH,⊙O的半径为r,且r=AD,求32的值.DHCH发布:2025/5/23 23:0:1组卷:1365引用:5难度:0.2