综合与探究
问题提出:某兴趣小组在综合与实践活动中提出这样一个问题:在等腰直角三角板ABC中,∠BAC=90°,AB=AC,D为BC的中点,用两根小木棒构建角,将顶点放置于点D上,得到∠MDN,将∠MDN绕点D旋转,射线DM,DN分别与边AB,AC交于E,F两点,如图1所示.
(1)操作发现:如图2,当E,F分别是AB,AC的中点时,试猜想线段DE与DF的数量关系是 DE=DFDE=DF,位置关系是 DE⊥DFDE⊥DF.
(2)类比探究:如图3,当E,F不是AB,AC的中点,但满足BE=AF时,判断△DEF的形状,并说明理由.
(3)拓展应用:①如图4,将∠MDN绕点D继续旋转,射线DM,DN分别与AB,CA的延长线交于E,F两点,满足BE=AF,△DEF是否仍然具有(2)中的情况?请说明理由;
②若在∠MDN绕点D旋转的过程中,射线DM,DN分别与直线AB,CA交于E,F两点,满足BE=AF,若AB=a,BE=b,则AE=a-b或a+ba-b或a+b(用含a,b的式子表示).

【考点】几何变换综合题.
【答案】DE=DF;DE⊥DF;a-b或a+b
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:337引用:4难度:0.1
相似题
-
1.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.发布:2025/6/16 20:30:1组卷:7189引用:10难度:0.1 -
2.阅读下面材料,完成(1)~(3)题.
数学课上,老师出示了这样一道题:
如图1,△ABC中,AC=BC=a,∠ACB=90°,点D在AB上,且AD=kAB(其中0<k<),直线CD绕点D顺时针旋转90°与直线CB绕点B逆时针旋转90°后相交于点E,探究线段DC、DE的数量关系,并证明.12
同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现DC与DE相等”;
小伟:“通过构造全等三角形,经过进一步推理,可以得到DC与DE相等”
小强:“通过进一步的推理计算,可以得到BE与BC的数量关系”
老师:“保留原题条件,连接CE交AB于点O.如果给出BO与DO的数量关系,那么可以求出CO•EO的值”
(1)在图1中将图补充完整,并证明DC=DE;
(2)直接写出线段BE与BC的数量关系(用含k的代数式表示);
(3)在图2中将图补充完整,若BO=DO,求CO•EO的值(用含a的代数式表示).513发布:2025/6/16 18:30:2组卷:538引用:2难度:0.2 -
3.如图①,在△ABC中,AB=AC=4,∠BAC=120°,D是BC的中点.
小明对图①进行了如下探究:在直线AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转60°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在直线AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
①∠BEP=;
②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在直线AD上运动时,求AE的最小值.发布:2025/6/17 6:0:2组卷:133引用:2难度:0.3