【模型建立】
(1)如图1,在正方形ABCD中,点E是对角线上一点,连接AE,CE.
求证:△ADE≌△CDE.
【模型应用】
(2)如图2,在正方形ABCD中,点E是对角线上一点,连接AE,CE.将EC绕点E逆时针旋转90°,交AD的延长线于点F,连接EF,CF.当AE=3时,求CF的长.
【模型迁移】
(3)如图3,在菱形ABCD中,∠BAD=60°,点E是对角线上一点,连接AE,CE.将EC绕点E逆时针旋转交AD的延长线于点F,连接EF,CF,CD与EF交于点G.当EF=EC时,判断线段CF与AE的数量关系,并说明理由.

【考点】四边形综合题.
【答案】(1)证明见解析部分;
(2)3;
(3)结论:CF=AE.证明见解析部分.
(2)3
2
(3)结论:CF=AE.证明见解析部分.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/25 0:0:2组卷:284引用:6难度:0.1
相似题
-
1.如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.
(1)如图1,若点E是CD的中点,点P在线段BF上,
①PQ=;
②线段BP,QC,EC的数量关系为 .
(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.
(3)正方形ABCD的边长为9,DE=DC,QC=2,请直接写出线段BP的长.13发布:2025/5/25 3:30:2组卷:544引用:4难度:0.4 -
2.如图,四边形ABCD是正方形,E是射线DC上一点,F是CE的中点,将线段EF绕点F逆时针旋转90°得到点GF,连接GE,CG,以CG,CD为邻边作平行四边形CGHD,连接AE,M是AE的中点.
(1)如图1,当点E与点D重合时,HM与AE的位置关系是 .
(2)如图2,当点E与点D不重合,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)当DE=2CE时,连接HE,请直接写出tan∠GHE的值.发布:2025/5/25 4:0:1组卷:109引用:1难度:0.1 -
3.在数学兴趣小组活动中,小亮进行数学探究活动.
(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图1.求CF的长;
(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2.在点E从点C到点A的运动过程中,求点F所经过的路径长;
(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3.在点M从点C到点D的运动过程中,求点N所经过的路径长;
(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4.当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为,点G所经过的路径长为.发布:2025/5/25 2:30:1组卷:3595引用:2难度:0.2