综合与实践
【问题情境】
在综合与实践课上,同学们以“A4纸片的折叠”为主题开展数学活动.如图①,在矩形A4纸片ABCD中,AB长为21cm,AD长为30cm.
【操作发现】
第一步:如图②,将矩形纸片ABCD对折,使AB与DC重合,得到折痕EF,再将纸片展平,则AE=1515cm.
第二步:如图③,将矩形纸片ABCD沿BE折叠,使点A的对应点M落在矩形ABCD的内部,再将纸片沿过点E的直线折叠,使ED与EM重合,折痕为EN,则∠BEN=9090度.
【结论应用】
在图③中,运用以上操作所得结论,解答下列问题:
(1)求证:△BME∽△EMN.
(2)直接写出线段CN的长为 727727cm.
72
7
72
7
【考点】相似形综合题.
【答案】15;90;
72
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/26 9:30:1组卷:399引用:4难度:0.3
相似题
-
1.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片ABCD折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,在图1中找到一个与△DEP相似的三角形,并证明你的结论;
(2)当点P在边CD的什么位置时,△DEP与△CPG面积的比是9:25?请写出求解过程;
(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片ABC折叠,使顶点A落在边BC上的点P处(点P与B、C不重合),折痕为EF,当点P在边BC的什么位置时,△BEP与△CPF面积的比是9:25?请写出求解过程.发布:2025/6/15 22:0:1组卷:1072引用:9难度:0.2 -
2.在矩形ABCD中,AD=3,CD=4,点E在边CD上,且DE=1.
感知:如图①,连接AE,过点E作EF⊥AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);
探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE∽△ECF;
应用:如图③,若EF交AB边于点F,其他条件不变,且△PEF的面积是3,则AP的长为发布:2025/6/16 19:30:1组卷:681引用:3难度:0.1 -
3.如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N.
(1)求证:△BFM∽△NFA;
(2)试探究线段FM、DF、FN之间的数量关系,并证明你的结论;
(3)若AC=BC,DN=12,ME:EN=1:2,求线段AC的长.发布:2025/6/16 11:30:2组卷:851引用:7难度:0.3