已知a>0,设函数f(x)=(2x-a)lnx+x,f′(x)是f(x)的导函数.
(1)若a=2,求曲线f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在区间(1,+∞)上存在两个不同的零点x1,x2(x1<x2).
①求实数a的取值范围;
②证明:x2f′(x2)<a22e-a2-e.
x
2
f
′
(
x
2
)
<
a
2
2
e
-
a
2
-
e
【答案】(1)x-y=0;
(2)①(4,+∞);②证明见解析.
(2)①(4
e
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:111引用:4难度:0.4
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:296引用:2难度:0.4 -
2.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:47引用:4难度:0.5 -
3.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:187引用:2难度:0.1