试卷征集
加入会员
操作视频

综合与探究
如图,顶点为M的抛物线y=a(x+1)2-4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,-3).
(1)求抛物线的解析式;
(2)判断△BCM是不是直角三角形,并说明理由;
(3)若P是该二次函数图象上位于x轴上方的一点,且S△APB=S△PCM,直接写出点P的坐标.

【考点】二次函数综合题
【答案】(1)y=(x+1)2-4=x2+2x-3;
(2)△BCM是直角三角形,理由见解答;
(3)点P的坐标为:(
-
7
-
193
6
109
+
13
193
18
)或(
-
7
+
193
6
109
-
13
193
18
).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/4 19:0:9组卷:195引用:2难度:0.4
相似题
  • 1.如图所示,抛物线y=x2-2x-3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.
    (1)求点C及顶点M的坐标.
    (2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.
    (3)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.

    发布:2025/6/15 20:30:5组卷:511引用:3难度:0.1
  • 2.如图,抛物线y=
    1
    2
    x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
    (1)求抛物线的解析式及顶点D的坐标;
    (2)判断△ABC的形状,证明你的结论;
    (3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.

    发布:2025/6/15 6:30:1组卷:2010引用:14难度:0.5
  • 3.边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为

    发布:2025/6/14 23:30:1组卷:2330引用:24难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正