已知抛物线y=(m-1)x2+(m-2)x-1与x轴交于A、B两点.
(1)求m的取值范围;
(2)若m>1,且点A在点B的左侧,OA:OB=1:3,试确定抛物线的解析式;
(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线y=13x+b与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.
y
=
1
3
x
+
b
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:356引用:2难度:0.5
相似题
-
1.综合与探究.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,过点C作AB的平行线,交抛物线于点D,P为抛物线上一动点,过点P作直线CD的垂线,垂足为E,与x轴交于点F,设点P的横坐标为m.
(1)求抛物线的函数表达式及点D的坐标;
(2)当m<-1,且时,探究四边形ABDE能否成为平行四边形,并说明理由;EFPF=23
(3)当m>0时,连接AC,PC,抛物线上是否存在点P,使∠PCE与∠BAC互余?若存在,请求出点P的坐标,若不存在,请说明理由.发布:2025/5/25 3:30:2组卷:134引用:1难度:0.2 -
2.如图,一次函数y=-x-4的图象与x轴、y轴分别交于A、C两点,二次函数y=
x2+bx+c的图象经过点A、C,与x轴另一交点为B,其对称轴交x轴于D.12
(1)求二次函数的表达式.
(2)在抛物线的对称轴上是否存在一点N,使得∠ANB=45°.若存在,求出N点坐标,若不存在,请说明理由.发布:2025/5/25 3:30:2组卷:410引用:2难度:0.1 -
3.在平面直角坐标系中,抛物线y=ax2+bx+1(a≠0)经过点A(2,1),顶点为点B.
(1)用含a的代数式表示b;
(2)若a>0,设抛物线y=ax2+bx+1(a≠0)的对称轴为直线l,过A作AM⊥l于点M,且MB=2AM,当m-2≤x≤m时,抛物线的最高点的纵坐标为17,求m的值;
(3)若点C的坐标为(-5,-1),将点C向右平移9个单位长度得到点D,当抛物线y=ax2+bx+1(a≠0)与线段CD有两个交点时,直接写出a的取值范围.发布:2025/5/25 3:30:2组卷:176引用:2难度:0.2