已知函数f(x)=log3(1+ax),g(x)=log3[(2a-1)x2+(3a-2)x],a∈R.
(1)若a=3,求不等式f(3x+1)>f(x)的解集;
(2)若函数f(x)-g(x)=0有唯一的解,求实数a的取值范围.
f
(
x
)
=
log
3
(
1
+
ax
)
,
g
(
x
)
=
log
3
[
(
2
a
-
1
)
x
2
+
(
3
a
-
2
)
x
]
,
a
∈
R
【考点】指、对数不等式的解法.
【答案】(1)(-,+∞).
(2){0}∪[,]∪[1,+∞).
1
3
(2){0}∪[
1
3
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:145引用:3难度:0.5