某卖场“618”促销期间,规定每位顾客购物总金额超过888元可免费参加一次抽奖活动,活动规则如下:“在一个不透明的纸箱中放入9个大小相同的小球,其中3个小球上标有数字1,3个小球上标有数字2,3个小球上标有数字3.每位顾客从该纸箱中一次性取出3个球,若取到的3个球上标有的数字都一样,则获得一张80元的代金券;若取到的3个球上标有的数字都不一样,则获得一张40元的代金券;若是其他情况,则获得一张10元的代金券.然后将取出的3个小球放回纸箱,等待下一位顾客抽奖.”
(1)记随机变量X为某位顾客在一次抽奖活动中获得代金券的金额数,求随机变量X的分布列和数学期望;
(2)该卖场规定,若“618”期间在该卖场消费的顾客购物总金额不足888元,则可支付19.9元开通该卖场会员服务,获得一次抽奖机会,若您是该位顾客,从收益的角度考虑,您是否愿意开通会员参加这一次抽奖活动?请说明理由.
【考点】离散型随机变量的均值(数学期望).
【答案】(1)X的分布列为:
E(X)=.
(2)我愿意开通会员参加这一次抽奖活动,理由见解析.
X | 10 | 40 | 80 |
P | 9 14 |
9 28 |
1 28 |
155
7
(2)我愿意开通会员参加这一次抽奖活动,理由见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:19引用:2难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7