常用的因式分解的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2-2xy+y2-16,我们细心观察这个式子,会发现前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解,过程如下:x2-2xy+y2-16=(x-y)2-16=(x-y+4)(x-y-4).这种分解因式的方法叫分组分解法,利用这种分组的思想方法解决下列问题:
(1)1-4a2+4ab-b2;
(2)9a2+4b2-25m2-n2+12ab+10mn;
(3)已知三角形的三条边长分别为a、b、c,当2a2+b2+c2-2a(b+c)=0,求a2+2ac4b2.
a
2
+
2
ac
4
b
2
【答案】(1)(1+2a-b)(1-2a+b);
(2)(3a+2b+5m-n)(3a+2b-5m+n);
(3).
(2)(3a+2b+5m-n)(3a+2b-5m+n);
(3)
3
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:115引用:1难度:0.5
相似题
-
1.阅读下列题目的解题过程:
已知a、b、c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;
(2)错误的原因为:;
(3)本题正确的结论为:.发布:2024/12/23 18:0:1组卷:2622引用:25难度:0.6 -
2.若a是整数,则a2+a一定能被下列哪个数整除( )
发布:2024/12/24 6:30:3组卷:417引用:7难度:0.6 -
3.阅读理解:
能被7(或11或13)整除的特征:如果一个自然数末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是7(或11或13)的倍数,则这个数就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法验证67822615是7的倍数(写明验证过程);
(2)若对任意一个七位数,末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是11的倍数,证明这个七位数一定能被11整除.发布:2025/1/5 8:0:1组卷:134引用:3难度:0.4