设a∈[-2,0],已知函数f(x)=x3-(a+5)x, x≤0 x3-a+32x2+ax, x>0
(Ⅰ)证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ)设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>-13.
f
(
x
)
=
x 3 - ( a + 5 ) x , | x ≤ 0 |
x 3 - a + 3 2 x 2 + ax , | x > 0 |
x
1
+
x
2
+
x
3
>
-
1
3
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1326引用:11难度:0.1
相似题
-
1.已知函数f(x)=x3-2kx2+x-3在R上不单调,则k的取值范围是 ;
发布:2024/12/29 13:0:1组卷:237引用:3难度:0.8 -
2.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为( )
发布:2024/12/29 13:0:1组卷:265引用:7难度:0.9 -
3.已知函数f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若函数f(x)有两个极值点x1,x2(x1≠x2),证明:.x1•x2>e2发布:2024/12/29 13:30:1组卷:144引用:2难度:0.2