试卷征集
加入会员
操作视频

在等边△ABC中,D是边AC上一动点,连接BD,将BD绕点D顺时针旋转120°,得到DE,连接CE.
(1)如图1,当B、A、E三点共线时,连接AE,若AB=2,求CE的长;
(2)如图2,取CE的中点F,连接DF,猜想AD与DF存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接BE、AP交于G点.若GF=DF,请直接写出
CD
+
AB
BE
的值.

【考点】几何变换综合题
【答案】(1)
7

(2)DF=
1
2
AD
,理由详见解答;
(3)
6
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/13 13:0:4组卷:1188引用:6难度:0.1
相似题
  • 1.如图1,在△ABC中,∠BAC=90°,AB=AC,∠ABC=45°.MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E.
    (1)求证:BD=AE.
    (2)若将MN绕点A旋转,使MN与BC相交于点G(如图2),其他条件不变,求证:BD=AE.
    (3)在(2)的情况下,若CE的延长线过AB的中点F(如图3),连接GF,求证:∠1=∠2.

    发布:2025/6/14 2:30:1组卷:632引用:11难度:0.1
  • 2.如图1,已知△ABC和△ADE均为等腰直角三角形,点D、E分别在线段AB、AC上,∠C=∠AED=90°.

    (1)【观察猜想】
    将△ADE绕点A逆时针旋转,连接BD、CE,如图2,当BD的延长线恰好经过点E时:
    BD
    CE
    的值为
    ;∠BEC的度数为
    度;
    (2)【类比探究】
    如图3,继续旋转△ADE,连接BD,CE,设BD的延长线交CE于点F,请求出
    BD
    CE
    的值以及∠BFC的度数;
    (3)拓展延伸:若AE=DE=
    2
    ,AC=BC=6,当C、A、D三点在同一直线上时,请直接写出线段CE的长.

    发布:2025/6/14 9:0:1组卷:221引用:1难度:0.1
  • 3.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
    (1)如图①,若∠BAC=60°,AB=AC=2,点D在线段BC上,
    ①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;
    ②当四边形ADCE的周长取最小值时,直接写出BD的长;
    (2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.

    发布:2025/6/14 1:30:1组卷:160引用:1难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正